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Abstract

Although recent methods in Unsupervised Domain Adapta-
tion (UDA) have achieved success in segmenting rainy or
snowy scenes by improving consistency, they face limitations
when dealing with more challenging scenarios like foggy and
night scenes. We argue that these prior methods excessively
focus on weather-specific features in adverse scenes, which
exacerbates the existing domain gaps. To address this issue,
we propose a new metric to evaluate the severity of all ad-
verse scenes and offer a novel perspective that enables task
unification across all adverse scenarios. Our method focuses
on Severity, allowing our model to learn more consistent fea-
tures and facilitate domain distribution alignment, thereby al-
leviating domain gaps. Unlike the vague descriptions of con-
sistency in previous methods, we introduce Cross-domain
Consistency, which is quantified using the Structural Sim-
ilarity Index Measure (SSIM) to measure the distance be-
tween the source and target domains. Specifically, our uni-
fied model consists of two key modules: the Merging Style
Augmentation Module (MSA) and the Severity Perception
Mask Module (SPM). The MSA module transforms all ad-
verse scenes into augmented scenes, effectively eliminating
weather-specific features and enhancing Cross-domain Con-
sistency. The SPM module incorporates a Severity Percep-
tion mechanism, guiding a Mask operation that enables our
model to learn highly consistent features from the augmented
scenes. Our unified framework, named PASS (Parsing All
adverSe Scenes), achieves significant performance improve-
ments over state-of-the-art methods on widely-used bench-
marks for all adverse scenes. Notably, the performance of
PASS is superior to Semi-Unified models and even surpasses
weather-specific models.

Introduction
Adverse scene understanding is always challenging for au-
tonomous driving perception due to unpredictable noise in-
formation in severe observations. Additionally, the large
discrepancy between different adverse scenes, such as fog,
night, rain, and snow, makes it particularly difficult to solve
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Figure 1: Previous methods excessively focus on the
weather-specific features of all adverse scenes causing
their weaknesses. In contrast, our method eliminates these
weather-specific features by transforming them into new
augmented scenes. Then our method will be guided by
Severity Perception to divide augmented images into im-
ages with high and low severity corresponding to whether
to mask source domain images to strengthen Cross-domain
Consistency. We note the solid box means the images and
the dashed box means the features.

all of them with a unified model. While recent methods have
attempted to address adverse scene tasks by improving con-
sistency (Hoyer et al. 2023), they still have limitations.

Although prior works (Wang et al. 2022; Wang, Zhu, and
Yang 2021) have achieved success in addressing rainy or
snowy scenes by enhancing consistency, they show weak-
nesses when faced with more demanding scenarios like
foggy and night scenes. We argue that previous methods
(Wang et al. 2020) excessively focus on weather-specific
features such as brightness, hue, and contrast conditions dur-
ing the adaptation process, resulting in models overly sen-
sitive to these specific features and lacking generalization
across all adverse scenes.

To overcome this challenge, we propose that models
should not prioritize learning weather-specific features in-
herent in all adverse scenes. Instead, we suggest unify-
ing all adverse scenes by eliminating these intrinsic fea-



tures to reduce model sensitivities and introducing a new
metric to evaluate the severity of adverse scenes. By us-
ing severity as a guiding principle, our model can learn
weather-agnostic features with high Cross-domain Consis-
tency. We define Cross-domain Consistency as the measure
of the distance between the source and target domains and
argue that enhancing it can effectively reduce the disparity
between domains, improve knowledge transfer efficiency,
and enable models to learn more consistent features. Con-
sequently, our method aims to enhance Cross-domain Con-
sistency through two modules: Merging Style Augmentation
(MSA) and Severity Perception Mask (SPM).

To eliminate weather-specific features, the MSA module
operates on the target domains under adverse scenes, utiliz-
ing Style Augmentation (SA) and subsequent Image Merg-
ing. SA effectively eliminates weather-specific features by
transforming all adverse scenes into new augmented scenes.
We argue that SA enhances Cross-domain Consistency, as
the augmented scenes without the influence of weather con-
tain more consistent and aligned features with the source do-
main. However, we are concerned that SA may result in the
loss of certain content information due to strong style trans-
formations. To address this, we introduce an Image Merg-
ing mechanism within MSA, which merges augmented and
original images to preserve content information. This is im-
portant as our baseline (Hoyer, Dai, and Van Gool 2022b)
employs a high-resolution approach that is highly sensitive
to content information compared to other methods.

By eliminating weather from the target domains, we aim
to further decrease the sensitivity of our model to weather
from the source domain. To achieve this, we introduce the
SPM module, consisting of a Mask Operation and Sever-
ity Perception. Our Mask Operation differs from previous
fully covered masks and focuses on adjusting the bright-
ness, hue, contrast, and noise of images by randomly sam-
pling from preset uniform distributions (details discussed
later). This forces our model to learn to ignore weather-
specific features from both the source and target domains.
However, relying on the single Mask Operation has a detri-
mental effect on consistency, as masked images with high
severity may not align well with all augmented scene images
with varying severity levels. To alleviate this issue, we intro-
duce the Severity Perception mechanism, which screens out
high-severity and low-severity images and aligns them with
masked and unmasked images, respectively. This enhances
cross-domain consistency, as depicted in Fig 1.

In our experiments, we will conduct comprehensive in-
vestigations into Cross-domain Consistency, accompanied
by sufficient ablation studies, to validate our intuitions. Our
main contributions can be summarized as follows: (1) We
are the first to introduce SSIM (Wang et al. 2004) to UDA for
semantic segmentation, providing a quantifiable measure of
Cross-domain Consistency. (2) We propose a unified model
that can effectively handle tasks in all adverse scenes, in-
cluding fog, night, rain, and snow. (3) Our method surpasses
previous state-of-the-art approaches on widely-used bench-
marks for various adverse scenes, such as ACDC (fog, night,
rain, snow), Foggy Zurich, Foggy Driving, Dark Zurich,
Nighttime Driving, and BDD100k-Night. Notably, our per-

formance improvement on Cityscapes to Foggy Zurich ex-
ceeds 9% compared to the state-of-the-art methods.

Related Work
UDA for Semantic Segmentation To address the chal-
lenges generated by domain shift, many UDA methods have
been proposed that focus on adversarial training (Tsai et al.
2018; Zhu et al. 2017; Hoffman et al. 2018; Liao et al. 2022)
or self-training (Gong et al. 2023). In adversarial training,
models promoting domain-invariant features always develop
a discriminator to combine with a generative adversarial net-
work (GAN) (Goodfellow et al. 2020). Self-training models
leverage a teacher network to generate pseudo-labels (Lee
et al. 2013) to conduct unsupervised learning.

Adverse Scenes Understanding In Unsupervised Do-
main Adaptation, previous works focusing on adverse scene
understanding can be divided into foggy scene under-
standing, night scene understanding, and other methods
(Brüggemann et al. 2023; Gao et al. 2022; Lei et al. 2020)
focusing on several scenes. For the foggy scene understand-
ing (Iqbal, Hafiz, and Ali 2022), previous works (Dai et al.
2020; Sakaridis et al. 2018; Sakaridis, Dai, and Van Gool
2018) have tried to generate synthetic foggy images as
training data by developing fog simulators to transform the
clear weather. However, the synthetic-to-real gaps still exist.
Thus, there are two kinds of works to close the weather gaps
(Ma et al. 2022) and focus on Image Dehazing (Lee, Son,
and Kwak 2022). For the night scene understanding, previ-
ous night-specialized works (Xie et al. 2023) also focus on
narrowing the gaps by introducing twilight images (Dai and
Van Gool 2018), and extra geometry information to further
refine predictions (Sakaridis, Dai, and Gool 2019). Notably,
our unified model, PASS, can solve all adverse scene tasks
and even outperforms these weather-specialized models.

All in One All-in-One Network (Li, Tan, and Cheong
2020; Valanarasu, Yasarla, and Patel 2022) was proposed
to solve Imgae Restoration tasks under adverse scenes by
handling multiple adverse scene degradations using a single
network. Although the scope of research is different, the aim
of PASS to solve all adverse scene tasks by a unified model
is similar to All-in-One models.

Method
Overview of Our Method
The training datasets of models consist of source domain
images XS 2 RH⇥W⇥3 with GT label YS 2 RH⇥W⇥C

and unlabeled target domain images XT 2 RH⇥W⇥3, where
H,W,C respectively means that the height, width, and cat-
egory of classes of images. The MSA will work on XT to
transform them into XT 0 and then merge it with XT to fi-
nal augmented scene images XM . The SPM will transform
XS into XS0 according to whether XM passes the Severity
Perception mechanism.

Merging Style Augmentation (MSA)
MSA focuses on transforming all adverse scenes into new
augmented scenes that possess higher Cross-domain Con-
sistency containing more consistent features. MSA consists



of two distinct components: Style Augmentation (SA) and
Image Merging. To a better understanding of MSA, we need
to recap the SA.

Style Augmentation (SA) Different from many meth-
ods whose style transfer networks leverage a style predic-
tion network to generate style embeddings s, SA follows the
style transfer network P which follows (Ghiasi et al. 2017)
trained on the PBN dataset1 and discards its style prediction
network by sampling s from a multivariate normal distribu-
tion with the same mean µ and covariance ⌃ as the PBN
datasets. In this way, the burden of style transfer networks
can be significantly released. Simultaneously, to further con-
strain the strength of transformation, SA introduces the hy-
perparameter ⌘s to obtain the output embedding z:

z = ⌘sN(µ,⌃) + (1� ⌘s)XT (1)

Then, the embedding z which represents the new style, and
xT which is seen as a canvas will be incorporated again to
generate feature maps. Therefore, the output feature maps
Ms from SA can be expressed as:

Ms =
�(P (XT , z)� µ

0)

�
+ � (2)

The mean and standard deviation across the feature map spa-
tial axes are represented by µ

0 and �, respectively, while �

and � represent the weight and bias obtained from the style
transformer network.

Image Merging As mentioned earlier, to alleviate the de-
crease of content information caused by SA, we employ Im-
age Merging to merge the original images with their aug-
mented version, creating a combined input of our model. For
the image merging of MSA, we introduce another random
hyperparameter ⌘c which is randomly sampled from U(0, 1)
to merge the original image XT and X

0
T

to build final train-
ing images XM . We note that the usage of ⌘c is to decide the
rate of merging position rather than simple multiplication.

XM = Merge(⌘cXT , (1� ⌘c)XT 0) (3)

Severity Perception Mask (SPM)
To make further learning of consistent features from aug-
mented scenes generated by MSA, we propose SPM to work
on the source domain images and augmented scene im-
ages. SPM employs a Severity Perception mechanism and
Mask Operation. The aim of Mask Operation is to further
eliminate the weather-specific features of images from the
source domain. However, a single Mask Operation will miss
alignment of severity level leading to decreases in Cross-
domain Consistency. Thus, we propose the Severity Per-
ception mechanism to evaluate image severities and then
strengthen the alignment of images with different severity.

Mask Operation As discussed before, we argue that the
weather-specific features are related to four factors, includ-
ing brightness, hue, noise, and contrast of images. Therefore,
our masks consist of randomly sampling from uniform dis-
tributions of these factors. In this way, the factors of source
domain images can be further randomized so that our model

1https://www.kaggle.com/c/painter-by-numbers

Figure 2: Training flow of PASS. First, target images will
be augmented by MSA and then source domain images
will be judged whether to be augmented by SPM decided
on whether augmented target images pass the Severity Per-
ception. And then student network will conduct supervised
learning to generate LSrc/SPM . The teacher network will
produce the pseudo labels of augmented target images to
mix with the prediction of source images so that the student
network can calculate unsupervised loss LMSA.

can decrease the sensitivity to them. To achieve Mask Op-
eration, we set min and max as the different minimum and
maximum of every uniform distribution. Notably, our Mask
Operation will divide an image into many blocks and the
samplings of every block are also different. The first step for
Mask Operation to generate masks is calculating the number
Nb of blocks. We set the height and width of blocks are H

0

and W
0, and we denote the ideal number of blocks as Ni.

Thus, the H
0 and W

0 can be expressed as:

Nb = b
p
Nic (4)

H
0
/W

0 =
H/W

Nb

(5)

And then four factors will be randomly sampled from dif-
ferent uniform distributions and imposed on the original im-
ages XS in sequence to generate masked image XS0 .

Mask = bright

O
hue

O
contrast

O
noise (6)

factors ⇠ U(min,max) (7)
where

N
means the merging of different augmented factors

and factors including bright, hue, contrast, and noise. Thus
the achievement of masked images is:

X
(H,W,3)

S0 =
X

Nb

X

h02H0

X

w02W 0

Mask(X(h
0
,w

0
,3)

S
) (8)

Severity Perception Severity Perception mechanism uni-
fies all augmented scene images XM by measuring their
severity by calculating their severity pixels ratio. To obtain
the severity pixels ratio, we first transform the augmented
images to their gray-scale map version Xh 2 RH⇥W, and
then count the number of the gray pixels passing the sever-
ity value v to screen out severe pixels. Finally, we calculate



the ratio of severe pixels in all pixels and judge whether this
ratio exceeds the severity threshold ⌧ . If the ratio passes ⌧ ,
the Mask operation will be activated on the XS to generate
XS 0 which is in the same training mini batch as XM . The
process of Severity Perception controlling Mask Operation
is shown as follows:

Maskon =

(
1, if

P
h2H

P
w2W

(Xh)
(h,w)

>v

H·W > ⌧

0,
(9)

where Maskon means the activation of Mask Operation.

Overall Training Flow
The whole training flow is shown in Fig 2. PASS consists of
two networks which are a student network g✓ corresponding
to the source domain and a teacher network g� correspond-
ing to the target domain. Thus, the XS/S0 is the input of g✓
and the image XM is the input of g�. The main function of
g� is to generate valuable pseudo labels ŶM of XM and it
does not participate in the training process. The key point
of training is g� as it needs to perceive the Severity of input
images to decide whether activate Mask Operation on XS .
g� will generate pseudo labels ŶM of augmented scene im-
ages XM and respectively mix XS/S0 with XM and ŶS/S0

with ŶM by ClassMix mechanism (Tranheden et al. 2021).
g✓ is trained by calculating cross-entropy losses LSrc/SPM

and LMSA and moves its parameters to the teacher network
by EMA (Tarvainen and Valpola 2017) at the beginning of
every iteration. Notably, the generation of ŶM follows our
baseline (Hoyer, Dai, and Van Gool 2022b) which means
that an estimated parameter q will be added to measure the
confidence of ŶM due to the unsupervised learning of the
teacher network.

q
c =

P
h2H

P
w2W

(maxc0g�(X
(h,w,c

0
)

M
) > ⌧

0)

H ·W (10)

where ⌧
0 is the constrained parameter and only when the

predicted proportion of pixels in some categories of the tar-
get domain images exceeds the threshold ⌧

0, the prediction
of these categories will become pseudo-labels. Thus, the
LMSA is:

LMSA = �
X

H,W

X

c2C

q
c

M
Y

(H,W,c)

M
log g✓

⇣
X

(H,W,c)

M

⌘

(11)
Although LMSA needs q to constrain, there is no need to
control the ŶS by introducing new hyperparameters because
the student network conducts reliable supervised learning to
obtain LSPM calculated with masked images or LSrc cal-
culated with original images.

LSrc/SPM = �
X

H,W

X

c2C

Y
(H,W,c)

S/S0 log g✓

⇣
X

(H,W,c)

S/S0

⌘

(12)
To obtain the final loss function, we follow the feature dis-
tance loss LFD proposed in (Hoyer, Dai, and Van Gool
2022a) and combine all of the losses together:

L = LMSA + LSrc/SPM + 0.005 · LFD (13)

Experiments
Datasets
Cityscapes (Cordts et al. 2016) Cityscapes (CS) contain
2,975 for training, 500 for validation, and 1,525 for test-
ing of driving scenes captured in 50 urban areas. ACDC
(Sakaridis, Dai, and Van Gool 2021) ACDC comprises
four adverse scenes: fog, night, rain, and snow. For every
scene, there are 400 images for training, 100 images for val-
idation (including 106 night images), and 500 images for
testing. Foggy Zurich (Sakaridis et al. 2018) Foggy Zurich
(FZ) contains 1,522 images in the light fog and 1,498 im-
ages in the medium fog. Foggy Driving (Sakaridis et al.
2018) Foggy Driving (FD) comprises 101 real-world sce-
narios of foggy road conditions. It purely is a test bench-
mark. Dark Zurich (Sakaridis, Dai, and Gool 2019) Dark
Zurich (DZ) comprises 8,779 images captured during night-
time, twilight, and daytime. It also includes 50 valida-
tion images and 151 test images. Nighttime Driving (Dai
and Van Gool 2018) Nighttime Driving (ND) contains
50 nighttime images with coarsely annotated ground truth.
BDD100K-Night (Yu et al. 2020) BDD100K-Night (BD) is
a subset of the BDD100K segmentation dataset, consisting
of 87 nighttime images with accurate segmentation labels.

Comparison Experiment Settings
Implementation details The default implementation of our
methods is based on HRDA (Hoyer, Dai, and Van Gool
2022b), and follows the HRDA-based implementation of
the teacher-student self-training framework of DAFormer
(Hoyer, Dai, and Van Gool 2022a), which includes fea-
ture distance loss, confidence-weighted pseudo labels (⌧ 0 =
0.968), rare class sampling, and ClassMix following DACS
(Tranheden et al. 2021). The optimizer used is AdamW
(Loshchilov and Hutter 2017), with a learning rate of 6 ⇥
10�5 for the encoder and 6 ⇥ 10�4 for the decoder, and a
linear learning rate warm-up. Regarding the resolution setup
details, we follow the default configuration and parameters
of HRDA. Unless otherwise stated, the MSA parameters are
set to ⌘s = 0.5 and ⌘c = 0.5, which means that XT will be
combined with XT 0 at a medium position as shown in Fig 2.
For the Mask Operation of SPM, we set the min and max:
(�1.6, 1.6) for brightness, (�15, 15) for hue, (0.8, 1.2) for
contrast, and (0, 50) for noise. we also set Ni = 24, and
v = 40 for the Severity Perception.

Fog-specialized Models Comparison To demonstrate
our SOTA performance under fog scenes, we conduct CS to
ACDC-Fog, CS to FZ, and generalize to FD which means
the source domain uses CS, and the target domain uses
ACDC or FZ datasets. Notably, we train PASS on FZ and
test on FZ and FD. We compare PASS with fog-specialized
models, including SFSU (Sakaridis, Dai, and Van Gool
2018), CMAda3 (Dai et al. 2020), CuDA-Net (Ma et al.
2022), FIFO (Lee, Son, and Kwak 2022), FogAdapt (Iqbal,
Hafiz, and Ali 2022). We set the ⌧ = 0.08 in CS to FZ and
⌧ = 0.05 in CS to ACDC-Fog. The results are shown in the
foggy scenes of Table 1.

Night-specialized Models Comparison To show our per-
formance under night scenes, we conduct experiments on



Models
Adverse Scenes (mIoU)

Foggy Night Rainy Snowy All
ACDC-Fog FZ FD ACDC-Night DZ ND BD ACDC-Rain ACDC-Snow ACDC-All

Specialized Models
SFSU - 35.7 46.3 - - - - - - -

CMAda3 - 46.8 49.8 - - - - - - -
CuDA-Net 55.6 49.1 53.5 - - - - - - -

FIFO - 48.4 50.7 - - - - - - -
FogAdapt - 50.6 53.4 - - - - - - -
GCMA - - - - 42.0 45.6 33.2 - - -

MCGDA - - - - 42.5 49.4 34.9 - - -
DANNet - - - - 44.3 47.7 - - - 50.0

Semi-Unified Models
AdaptSeg - 26.1 37.6 - 30.4 34.5 22.0 - - -
DAFormer 48.9 40.8 - 44.7 48.5 51.8 33.9 59.9 53.7 55.4

SePiCo 58.5 - - 50.5 54.2 56.9 40.6 66.1 57.9 59.1
HRDA 69.9 46.0 - 53.1 55.9 - - 73.6 69.5 68.0
MIC - 49.7 - - 60.2 - - - - 70.4

Unified Models
PASS (Ours) 70.6 59.9 60.2 60.3 60.2 57.0 43.0 74.6 70.0 70.8

Table 1: Model-level comparison with PASS and other UDA for semantic segmentation methods. We compare PASS with the
state-of-the-art specialized models for foggy scenes and night scenes, and Semi-Unified models which test on a part of adverse
scene benchmarks. Bold denotes the best result and italics denotes the second-best.

CS to ACDC-Night, CS to DZ, and generalize to ND and
BD. We compare PASS with night-specialized models, in-
cluding GCMA (Sakaridis, Dai, and Gool 2019), MCGDA
(Sakaridis, Dai, and Van Gool 2020), and DANNet (Wu et al.
2021). We set ⌧ = 0.03 in CS to DZ, ⌧ = 0.035 in BN,
⌧ = 0.055 in ND, and ⌧ = 0.05 in CS to ACDC-Fog. The
comparisons are shown in the night scenes of Table 1.

Semi-Unified Models Comparison We define Semi-
Unified models as representing the previous models that
conduct tests on the part of benchmarks under different
scenes. We compare PASS with these Semi-Unified models
including AdaptSeg (Tsai et al. 2018), DAFormer (Hoyer,
Dai, and Van Gool 2022a), SePiCo (Xie et al. 2023), HRDA
(Hoyer, Dai, and Van Gool 2022b), and MIC. Except for
the foggy and night scenes experiments, we conduct CS
to ACDC-Rain, CS to ACDC-Snow, and CS to ACDC-All
Conditions. In these experiments, we also set the threshold
parameter ⌧ = 0.05.

Performance Experiments Analysis
We present the state-of-the-art performance of PASS in Ta-
ble 1. The results in foggy scenes demonstrate that our
PASS surpasses previous fog-specialized models and Semi-
Unified models across three foggy benchmarks. In the
Cityscapes to ACDC-Fog, PASS outperforms the Semi-
Unified model HRDA by 0.7% mIou. Particularly, for
Cityscapes to FZ and generalizing to FD, our PASS achieves
a 9.3% mIou improvement over FogAdapt in FZ and a 6.7%
mIou improvement over CuDA-Net in FD. These findings
indicate that PASS exhibits excellent adaptation capabilities
to foggy scenes and even outperforms specialized models.
For further analyses, we visualize the predictions under var-
ious adverse scenes in Fig 6. From the visualizations, we

observe that our PASS excels in predicting the sky, which
is often misclassified as vegetation by HRDA, leading to a
significant improvement in FZ.

Focusing on the comparison under night scenes, PASS
significantly outperforms night-specialized models and
achieves comparable performance to the Semi-Unified
model MIC in the Cityscapes to DZ. Moreover, in the gen-
eralization to ND and BD, PASS demonstrates advantages
over SePiCo with a 0.1% improvement in ND and a 2.4%
improvement in BD. Notably, in the Cityscapes to ACDC-
Night, PASS surpasses our baseline model HRDA by 7.3%
mIou. Night scene tasks are typically the most challenging in
UDA for semantic segmentation, but our PASS still exhibits
strong robustness. We attribute this success to SPM, which
enhances the ability of PASS to tolerate low-light conditions
and adapt to night scenes. These results align well with the
observation that the content information in night scenes is
the most prominent among all adverse scenes, as shown in
Fig 3 (b). Visualizing the predictions under ACDC night in
Fig 6, we can see that compared to the baseline, our PASS
learns more consistent features.

Regarding the performance in rainy and snowy scenes,
since there are no specialized models dedicated to these
two scenes, we compare PASS with semi-unified models.
The results reveal that PASS achieves state-of-the-art perfor-
mance by surpassing HRDA by 0.1% mIou in ACDC-Rain
and 0.5% mIou in ACDC-Snow. The last two predictions in
Fig 6 correspond to rainy and snowy scenes, respectively,
and they demonstrate that PASS effectively learns consis-
tent features, such as tiny traffic lights, which are more chal-
lenging to learn compared to other classes. Finally, in the
Cityscape to ACDC-all conditions experiments, our PASS
also achieves state-of-the-art results.



Figure 3: (a) means that MSA can significantly increase
the Cross-domain Consistency by eliminating the weather-
specific features. (b) quantifies the content information
which is reduced by SA and strengthened by MSA.

Figure 4: We validate that Severity Perception improves
Cross-domain Consistency. Only Mask indicates low consis-
tency caused by the single Mask Operation. SH -Mon shows
that images with high severity exhibit higher consistency
with masked images. SL-Moff demonstrates that images
with low severity also exhibit increased consistency with un-
masked images. SPM demonstrates that Severity Perception
effectively improves consistency.

Cross-domain Consistency Analysis
As we discussed above, unlike ambiguous descriptions of
consistency in previous works, we will quantify our Cross-
domain Consistency by calculating SSIM. Thus, we hope
to illustrate how the influence of Cross-domain Consistency
brought by MSA and SPM. We note that all Cross-domain
Consistency is calculated by the average SSIM of hundreds
of pairwise images.

Firstly, we demonstrate the influence of Cross-domain
Consistency brought about by MSA. In Fig 3 (a), we cal-
culate consistency between the Cityscapes source domain
and four ACDC target domains. The abscissa represents the
four adverse scenes of ACDC under various conditions. It
is evident that the utilization of MSA to augment images
significantly enhances Cross-domain Consistency compared
with the original images. Since we formulated that SA may
result in a decrease in content information, we incorporate
the Image Merging mechanism to address this issue. Thus,
we further analyze the content information by separating the
structure from the SSIM and calculating the structure under

Figure 5: Ablation studies of SA and MSA on Cityscapes
to ACDC by heat map visualization. The results show that
content information brought by MSA significantly improves
performance.

Figure 6: Visualization of prediction of PASS and baseline
under all adverse scenes. Our PASS is significantly superior
to the baseline.

each scene. As illustrated in Fig 3 (b), SA leads to a no-
ticeable decrease in content information across all scenes.
After incorporating the Image Merging mechanism to build
MSA, the decreasing trend is significantly alleviated across
all scenes. Notably, in the night scene, the content informa-
tion reverts back to 0.956 from 0.898.

Based on the enhancement of Cross-domain Consistency
from MSA, we also hope our SPM can also ensure a high-
level Cross-domain Consistency. We argue that employing
a single Mask Operation can strengthen the sensibility of
our model to weather-specific features on the source domain,
but it will cause an imbalance of the corresponding relation-
ship between the images with different severity in the train-
ing mini-batch, and further reduce the Cross-domain Consis-
tency. By introducing Severity Perception, we strengthen the
corresponding relationships again to enhance Cross-domain
Consistency by aligning the images with similar severities.
We show the quantified results in Fig 4.

In Fig 4, the abscissa values Cross-domain Consistency,
while the ordinate means that Cross-domain Consistency
will be calculated between augmented scene images (tar-
get domain) and masked or unmasked images (source do-
main). Only Mask means the consistency between all target
domain images (SH + SL) with the masked images Mon in-
dicating that using a single Mask Operation will cause the
imbalance leading to a decrease in Cross-domain Consis-
tency. SH -Mon represents the consistency between the se-



Bri. Hue Noi. Contr. mIou gain
1 - - - - 68.0 -
2 X - - - 68.8 +0.8
3 X X - - 68.8 +0.8
4 X X - X 69.9 +1.9
5 X X X - 70.1 +2.1
6 X X X X 70.8 +2.8

Table 2: Ablation studies on the four factors of Mask Op-
eration to validate the effectiveness. These experiments are
based on using MSA and Severity Perception. And the
results demonstrate the combination of four factors can
achieve the best performance.

vere images and masked images is higher than Only Mask by
0.04, indicating that Severe images align better with masked
images than all target images. Furthermore, SL-Moff also
demonstrates that low-severity images align better with un-
masked images which also possess low severity. Finally,
SPM, the weighted sum of SH -Mon and SL-Moff , effec-
tively demonstrates that Severity Perception aids in Mask
Operation achieving 0.085 improvements of Cross-domain
Consistency compared to Only Mask.

Therefore, we reasonably conclude that both MSA and
SPM significantly enhance Cross-domain Consistency by
their different functions. MSA enhances consistency by ef-
fectively eliminating weather-specific features and SPM en-
hances consistency by employing Severity to guide our
model to align images with different severities well.

Ablation Study Analysis
We conduct ablation studies comparing the original SA with
our MSA, which includes SA and Image Merging, as illus-
trated in Fig 5. The results clearly demonstrate that MSA
outperforms SA by 5% mIou and surpasses HRDA by 1%.
Notably, SA performs even worse than HRDA, with a 4%
mIou decrease. This observation aligns with the negative
impact of SA on image content information, which HRDA
is particularly sensitive to. In contrast, MSA effectively ad-
dresses this issue. Additionally, by analyzing the improve-
ments in classes such as Traffic Light, Fence, and Bicy-
cle, we can infer that enhanced Cross-domain Consistency
significantly assists our model in accurately recognizing
challenging-to-learn classes.

We further conduct ablation studies on MSA and mecha-
nisms of SPM on Cityscapes to ACDC-All Conditions, as
presented in Table 2. The baseline performance is repre-
sented in the first row for comparison purposes. From the
second row, we observe that employing a single MSA re-
sults in a 0.7% gain by enhancing Cross-domain Consis-
tency from the target domains. Next, we focus on the third
row, which indicates that using a single Mask Operation
without MSA leads to a significant decrease of -5.8% in per-
formance. We argue that this decrease is primarily due to the
lack of consistency. However, when we incorporate Sever-
ity Perception to strengthen Cross-domain Consistency by
balancing the severity level, this decrease is mitigated from
-5.8% to -0.5%. Furthermore, we can observe the added

MSA Mask Op. Seve. mIou gain
1 - - - 68.0 -
2 X - - 68.7 +0.7
3 - X - 62.2 -5.8
4 - X X 67.5 -0.5
5 X X - 68.2 +0.2
6 X X X 70.8 +2.8

Table 3: Ablation studies on MSA and mechanisms of SPM.
The results show the necessity of MSA, Mask Operation,
and Severity Perception.

value contributed by consistency in the fifth and sixth rows,
where MSA aids both the single Mask Operation and SPM,
resulting in performance improvements of -5.8% to 0.2%
and -0.2% to 2.8%, respectively. The combining of MSA
and SPM also outperforms the using single MSA by 2.1%.
Therefore, both MSA and SPM are essential components in
constructing PASS.

As we discussed above, our Mask Operation consists of
randomly sampling four emphases, brightness, hue, noise,
and contrast to decrease the sensibilities of our model to
weather as weather-specific features are always related to
these four emphases. Therefore, we are going to conduct
ablation studies on Cityscapes to ACDC-All Conditions to
validate the effectiveness of constitutions of Mask Opera-
tion. In Table 3, we still set the performance of HRDA in the
first row as the base comparison. Notably, the usage of the
MSA and Severity Perception are default conditions. From
the second row, we observed a 0.8% gain when using sin-
gle brightness sampling. However, the third row showed no
improvement when combining brightness with hue. To fur-
ther investigate the effectiveness of hue, we conducted the
fourth and fifth rows. The results demonstrated that the per-
formance in the fifth row, which included hue, was better
than in the fourth row without hue. Additionally, the sixth
and fifth rows confirmed the effectiveness of contrast. Based
on these findings, we can conclude that hue needs to work in
conjunction with noise or contrast, and that each emphasis is
necessary to achieve unification. Experiments on parameter
sensitivity to ⌧ and Ni are shown in the appendix.

Conclusion

In this paper, we aim to create a unified model named PASS
to parse all adverse scene tasks in UDA for semantic seg-
mentation. To achieve this, we propose a new measure-
ment, Severity, to lead our model to focus on the learning of
highly consistent features rather than weather-specific fea-
tures of all adverse scenes. In this process, we conduct care-
ful analysis experiments and ablation studies on the quantifi-
cation of our Cross-domain Consistency to validate why our
method can work well and how we create MSA and SPM.
We also conduct sufficient performance experiments on al-
most widely used benchmarks including ACDC (fog, night,
rain, and snow), Foggy Zurich, Foggy Driving, Dark Zurich,
Nighttime Driving, and BDD100K-Night.
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